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Fragmentation experiments could provide information about nuclear matter properties and 

constrain the nuclear equation of state (EOS) [1-4]. Long ago, W. Bauer stressed the crucial influence of 

Pauli blocking on the momentum distributions of nucleons emitted in heavy ion collisions near the Fermi 

energy [5]. We have recently proposed a method to estimate the density and temperature based on 

fluctuations estimated from an event by event determination of fragment momenta and yields arising after 

the energetic collision [6].  A similar approach has also been applied to experimentally observe the 

quenching of fluctuations in a trapped Fermi gas [7] and the enhancement of fluctuations in a Bose 

condensate [8]. We go beyond the method of [7, 8] by including quadrupole fluctuations as well to have a 

direct measurement of densities and temperatures for subatomic systems (Fermions or Bosons). We 

recently extend the method to derive the entropy of the system and have shown how to recover the 

classical limit for fermions  when the temperatures are large compared to the Fermi energy. Furthermore, 

we have also shown how to derive the density and temperature for bosons in the same scenario. We 

examine the collision dynamics by means of the Constrained Molecular Dynamics (CoMD) model, which 

allows an event-by-event analysis of the reaction mechanisms that is necessary in order to calculate 

fluctuations. 

Following [10] a quadrupole Q୶୷ ൌ൏ ୶ଶ݌ െ p୷ଶ ൐ is defined in a direction transverse to the beam 

axis (z-axis) and the average is performed, for a given particle type, over events. Such a quantity is zero in 

the center of mass of the equilibrated emitting source. Its variance is given by the simple formula: 
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where n(p) is the momentum distribution of particles. In [10] a classical Maxwell-Boltzmann distribution 

of particles at temperature Tୡ୪ was assumed which gives: σ୶୷ଶ ൌ Nഥሺ2mTୡ୪ሻଶ, m is the mass of the fragment. 

Nഥ is the average number of particles. 

In heavy ion collisions, the produced particles do not follow classical statistics, thus the correct 

distribution function must be used in Eq. (1). Protons(p), neutrons(n), tritium etc. follow the Fermi 

statistics while, deuterium, alpha particles etc., even though they are constituted of nucleons, should 

follow the Bose statistics.  

For fermions, we will concentrate on, in particular, p and n which are abundantly produced in the 

collisions thus carrying important informations on the densities and temperatures reached. Using a Fermi-

Dirac distribution n(p),  
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Where F୕େ ቀ
୘

க౜
ቁ ൌ 0.2ሺ

୘

க౜
ሻିଵ.଻ଵ ൅ 1 is the quantum correction factor which should converge to one for high T 

(classical limit).   

Within the same framework we can calculate the fluctuations of the p, n multiplicity distributions. 

These are given by [11]. Since in experiments or modeling one recovers the normalized fluctuations, it is 

better to find a relation between the normalized temperatures as function of the normalized fluctuations. It 

is useful to parameterize the numerical results as: 
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which is practically indistinguishable from the numerical result. Since from experimental data or models 

it is possible to extract directly the normalized fluctuations, one can easily derive the value of 
୘

க౜
 from Eq. 

(3). Substuting Eq. (3) into Eq. (2), the temperature and fermi energy for the fermion system can be 

obtained. Then the density of the system can be extracted from 
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Where ρ଴ ൌ 0.16	fmିଷ is the normal density. Once the density and the temperature of the system have 

been determined it is straightforward to derive other thermodynamical quantities. One such quantity is the 

entropy: 
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U and A are the internal and Helmotz free energy respectively[11]. For practical purposes it might be 

useful to have a parameterization of the entropy in terms of the normalized fluctuations, which is 

physically transparent since entropy and fluctuations are strongly correlated [11]: 
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 For bosons, in the same scenario, we use a Bose-Einstein distribution n(p) for the particles. But 

we need to consider the cases above or below the critical temperature Tୡ ൌ
ଶπ

ሾଶ.଺ଵଶሺଶୱାଵሻሿమ/య
԰మ

୫
ρଶ/ଷ at a given 

density ρ with spin s, we obtain [11]: 
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where the g୬ሺzሻ functions are well studied in the literature [11] and z ൌ eμ/୘ is the fugacity which 

depends on the critical temperature for Bose condensate and thus on the density of the system and the 

chemical potential μ [11]. The quadrupole fluctuations depend on temperature and density through Tୡ, 

therefore we need more information in order to be able to determine both quantities for T ൐ Tୡ. 

We can calculate the multiplicity fluctuations of d, α etc in the same framework again. 

Fluctuations are larger than the average value and diverge near the critical point. We will show the results 

later. Interactions and finite size effects will of course smooth the divergence [4]. These results are very 

important and could be used to pin down a Bose condensate. 

Two solutions are possible depending whether the system is above or below the critical 

temperature for a Bose condensate. Below the critical point, Eq. (7) can be used to calculate T and then 

multiplicity fluctuation gives the critical temperature and the corresponding density. Above the critical 

point it is better to estimate the chemical potential first and then derive the temperature, critical 

temperature and density. The details can be seen in coming paper. 

The CoMD-α Model has been developed to study collisions between alpha cluster candidates and 

to search for Bose condensates in alpha-clustered nuclear systems. In CoMD-α case, the nuclear ground 

states have an alpha-clustered structure. The boson nature of alpha-clusters is taken into count in the two-

body collision term by means of the Bose-Einstein blocking factor  Π ൌ ሺ1 ൅ fଵഥሻሺ1 ൅ fଶഥሻ, where fనഥ is the 

average occupasion probability for alpha i=1, 2. We calculate this factor Π before the collision and Πᇱ 

after the collision. If Πᇱ ൐  the collision will be accepted, otherwise, the collision will be rejected. We ,ߎ

will look at the multiplicity fluctuations for alpha particles. Later, we can select the particular events from 

experimental data which only have alpha like mass fragments. Then we can compare the model data with 

experimental data. 

To illustrate the strength of our approach we have performed calculations for the system 

Caସ଴ ൅ Caସ଴  at fixed impact parameter b=1fm and beam energies E୪ୟୠ/A ranging from 4 MeV/A up to 100 

MeV/A. Collisions were followed up to a maximum time t=1000 fm/c in order to accumulate enough 

statistics. A complete discussion of these simulations can be found in [6], here we will use the results to 

compare the different approximations. 

In Fig. 1 we plot the temperature versus density as obtained from the quadrupole and multiplicity 

fluctuations. The top panel refers to protons while the bottom to neutrons. As we can see from the figure, 

the results obtained using the fit functions, Eqs.(2) and (3), deviate slightly from the lowest order 

approximations [6]. This is a signature that we are in the fully quantum regime for the events considered. 

For comparison, in the same plot we display the classical temperatures which are systematically higher 

than the quantum ones[10]. 
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FIG. 1. Temperatures versus density normalized to the ground state density 
ρ଴ ൌ 0.16fmିଷ, derived from quantum fluctuations, Eqs. (2, 3). Open dots 

and open squares are the approximation at the lowest order in 
୘

க౜
, full stars and 

open stars are the classical cases similar to [10], the full triangles are the 
numerical results. The top panel refers to protons and the bottom panel refers to 
neutrons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To better summarize the results we plot in Fig. 2 (top panel), the energy density ε ൌ 〈୉౪౞
୅
〉 ρ versus 

temperature [6]. Different particle types scale especially at high T where Coulomb effects are expected to 

be small. A rapid variation of the energy density is observed around T~2MeV for neutrons and  T~3MeV 

for protons which indicates a first order phase transition, or a crossover. As we see from the figure, the 

numerical solution of the Fermi integrals gives small corrections while keeping the relevant features 

obtained in the lowest approximation intact. This again suggests that in the simulations the system is fully 

quantal. We also notice that Coulomb effects become negligible at T ≫ 3MeV where the phase transition 

occurs. The smaller role of the Coulomb field in the phase transition has recently been discussed 

experimentally in the framework of the Landau's description of phase transitions [12].  

In order to confirm the origin of the phase transition, it is useful to derive the entropy density 

Σ ൌ 〈ୗ
୒
〉 ρ which is plotted in the bottom panel of Fig. 2. The rapid increase of the entropy per unit volume 

is due to the sudden increase of the number of degrees of freedom (fragments) with increasing T. The 

entropy can be also derived using the law of mass action from the ratio of the produced number of 

deuterons to protons (or neutrons) Rୢ,୮ሺ୬ሻ [4, 13]: 
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FIG. 2. (Top) Energy density versus temperature. Symbols as in Fig.1; 
(Bottom) entropy density versus temperature. The opens symbols refer to 
the entropy density calculated from the ratios of the produced number of 
deuterons to protons (triangles) (neutrons-stars), Eq. (9). 
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We find an overall qualitative good agreement of the entropy density to the quantum results, 

especially for neutrons. Very interesting is the good agreement for neutrons at low T where the particles 

are emitted from the surface of the nuclei which are at low density, see also Fig.1. Such a feature is not 

present for the protons due to larger Coulomb distortions. There is a region near the transition (T~3MeV), 

where both ratios do not reproduce the quantum results. However, at large temperatures it seems that all 

methods converge as expected. Recall that this method is valid only if d, n and p are produced in the 

reactions. If different fragments are produced then the entropy derivation should be modified to include 

more complex nuclei [4]. The CoMD model favors the formation of deuterium since it is over bound. We 

expect data to be quite different since alpha  production is important but qualitatively we expect a similar 

behavior as discussed here. 

In Fig 3, we plot the multiplicity fluctuation versus reduced temperature t ൌ
୘ି୘ౙ
୘ౙ

. The 

multiplicity fluctuations diverge at the critical temperature where t=0. One can calculate the multiplicity 

fluctuation numerically above the critical temperature. Below the critical temperature, one can obtain the 
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FIG. 3. Multiplicity fluctuation versus reduced temperature t. 

 
FIG. 4. Multiplicity fluctuation versus energy per nucleon in center of mass in 
CoMD-α. The square is with Bose-Einstein blocking factor and the circle is 
without Bose-Einstein blocking factor.

behavior of the multiplicity fluctuation according to Landau’s theory. It is driven by the interaction but 

doesn’t depend on the detail of interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig 4, we plot the multiplicity fluctuations for alpha particle versus Eୡ୫/A. As one can see, the  
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multiplicity fluctuations of alpha particle are systematically larger in the Bose-Einstein blocking case. 

This means the multiplicity fluctuations can be used as a probe to study Bose condensate phenomena in 

nuclear physics. Of course, the interactions and finite size effects will smooth the divergence, this may be 

the reason we don’t see the divergence in the model. 

In conclusion, in this work we have addressed a general method for deriving densities and 

temperatures of weakly interacting fermions and bosons. For high temperatures and small densities the 

classical result is recovered as expected. We have shown in CoMD calculations that the effect of higher 

order terms give small differences in the physical observables considered in this paper but they could 

become large when approaching the classical limit. To overcome this problem we have produced suitable 

parameterizations of quadrupole and multiplicity fluctuations which are valid at all temperatures and 

densities. The results obtained in this paper are quite general and they could be applied to other systems. 

The CoMD-αresults show that the multiplicity fluctuations are a good probe to investigate boson 

condensate. 
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